Sunday , November 24 2024
Home / Lars P. Syll / The raven paradox

The raven paradox

Summary:
[embedded content] Besides illustrating that it is simply not a good description of how we make inferences in science to assume that non-black armchairs confirm the hypothesis that all ravens are black, Hempel’s paradox — at least in my reading of it — makes a good argument for a causal account of confirmation of empirical generalizations. Contrary to positivist theories of confirmation, the paradox shows that to have a good explanation in sciences, we have to make references to causes. Observed uniformity does not per se confirm generalizations. We also have to be able to show that uniformity does not appear by chance, but is the result of causal forces at work (such as e.g. genes in the case of ravens. Assume you’re a Bayesian turkey (chicken) and hold a nonzero

Topics:
Lars Pålsson Syll considers the following as important:

This could be interesting, too:

Lars Pålsson Syll writes Kausalitet — en crash course

Lars Pålsson Syll writes Randomization and causal claims

Lars Pålsson Syll writes Race and sex as causes

Lars Pålsson Syll writes Randomization — a philosophical device gone astray

 

Besides illustrating that it is simply not a good description of how we make inferences in science to assume that non-black armchairs confirm the hypothesis that all ravens are black, Hempel’s paradox — at least in my reading of it — makes a good argument for a causal account of confirmation of empirical generalizations. Contrary to positivist theories of confirmation, the paradox shows that to have a good explanation in sciences, we have to make references to causes. Observed uniformity does not per se confirm generalizations. We also have to be able to show that uniformity does not appear by chance, but is the result of causal forces at work (such as e.g. genes in the case of ravens.

Assume you’re a Bayesian turkey (chicken) and hold a nonzero probability belief in the hypothesis H that “people are nice vegetarians that do not eat turkeys and that every day I see the sun rise confirms my belief.” For every day you survive, you update your belief according to Bayes’ Rule

P(H|e) = [P(e|H)P(H)]/P(e),

where evidence e stands for “not being eaten” and P(e|H) = 1. Given that there do exist other hypotheses than H, P(e) is less than 1 and a fortiori P(H|e) is greater than P(H). Every day you survive increases your probability belief that you will not be eaten. This is totally rational according to the Bayesian definition of rationality. Unfortunately — as Bertrand Russell famously noticed — for every day that goes by, the traditional Christmas dinner also gets closer and closer …

Studying only surface relations won’t do. Not knowing the nature of the causal structures and relations that give rise to what we observe, explanations serve us as badly as the one used by the turkey. Not knowing why things are the way they are, we run the same risk as the Russellian turkey.

No causality, no confirmation/explanation.

Advertisements
Lars Pålsson Syll
Professor at Malmö University. Primary research interest - the philosophy, history and methodology of economics.

Leave a Reply

Your email address will not be published. Required fields are marked *