The search for heavy balls in economics One of the limitations with economics is the restricted possibility to perform experiments, forcing it to mainly rely on observational studies for knowledge of real-world economies. But still — the idea of performing laboratory experiments holds a firm grip of our wish to discover (causal) relationships between economic ‘variables.’ If we only could isolate and manipulate variables in controlled environments, we would probably find ourselves in a situation where we with greater ‘rigour’ and ‘precision’ could describe, predict, or explain economic happenings in terms of ‘structural’ causes, ‘parameter’ values of relevant variables, and economic ‘laws.’ Galileo Galilei’s experiments are often held as exemplary for how to perform experiments to learn something about the real world. Galileo’s experiments were according to Nancy Cartwright (Hunting Causes and Using Them, p. 223) designed to find out what contribution the motion due to the pull of the earth will make, with the assumption that the contribution is stable across all the different kinds of situations falling bodies will get into … He eliminated (as far as possible) all other causes of motion on the bodies in his experiment so that he could see how they move when only the earth affects them.
Topics:
Lars Pålsson Syll considers the following as important: Theory of Science & Methodology
This could be interesting, too:
Lars Pålsson Syll writes Kausalitet — en crash course
Lars Pålsson Syll writes Randomization and causal claims
Lars Pålsson Syll writes Race and sex as causes
Lars Pålsson Syll writes Randomization — a philosophical device gone astray
The search for heavy balls in economics
One of the limitations with economics is the restricted possibility to perform experiments, forcing it to mainly rely on observational studies for knowledge of real-world economies.
But still — the idea of performing laboratory experiments holds a firm grip of our wish to discover (causal) relationships between economic ‘variables.’ If we only could isolate and manipulate variables in controlled environments, we would probably find ourselves in a situation where we with greater ‘rigour’ and ‘precision’ could describe, predict, or explain economic happenings in terms of ‘structural’ causes, ‘parameter’ values of relevant variables, and economic ‘laws.’
Galileo Galilei’s experiments are often held as exemplary for how to perform experiments to learn something about the real world. Galileo’s experiments were according to Nancy Cartwright (Hunting Causes and Using Them, p. 223)
designed to find out what contribution the motion due to the pull of the earth will make, with the assumption that the contribution is stable across all the different kinds of situations falling bodies will get into … He eliminated (as far as possible) all other causes of motion on the bodies in his experiment so that he could see how they move when only the earth affects them. That is the contribution that the earth’s pull makes to their motion.
Galileo’s heavy balls dropping from the tower of Pisa, confirmed that the distance an object falls is proportional to the square of time, and that this law (empirical regularity) of falling bodies could be applicable outside a vacuum tube when e. g. air existence is negligible.
The big problem is to decide or find out exactly for which objects air resistance (and other potentially ‘confounding’ factors) is ‘negligible.’ In the case of heavy balls, air resistance is obviously negligible, but how about feathers or plastic bags?
One possibility is to take the all-encompassing-theory road and find out all about possible disturbing/confounding factors — not only air resistence — influencing the fall and build that in to one great model delivering accurate predictions on what happens when the object that falls is not only a heavy ball, but feathers and plastic bags. This usually amounts to ultimately state some kind of ceteris paribus interpretation of the ‘law.’
Another road to take would be to concentrate on the negligibility assumption and to specify the domain of applicability to be only heavy compact bodies. The price you have to pay for this is that (1) ‘negligibility’ may be hard to establish in open real-world systems, (2) the generalisation you can make from ‘sample’ to ‘population’ is heavily restricted, and (3) you actually have to use some ‘shoe leather’ and empirically try to find out how large is the ‘reach’ of the ‘law.’
In mainstream economics one has usually settled for the ‘theoretical’ road (and in case you think the present ‘natural experiments’ hype has changed anything, remember that to mimic real experiments, exceedingly stringent special conditions have to obtain).
In the end, it all boils down to one question — are there any heavy balls to be found in economics, so that we can indisputably establish the existence of economic laws operating in real-world economies?
As far as I can see there some heavy balls out there, but not even one single real economic law.
Economic factors/variables are more like feathers than heavy balls — non-negligible factors (like air resistance and chaotic turbulence) are hard to rule out as having no influence on the object studied.
Galilean experiments are hard to carry out in economics, and the theoretical ‘analogue’ models economists construct and in which they perform their ‘thought-experiments’ build on assumptions that are far away from the kind of idealized conditions under which Galileo performed his experiments. The ‘nomological machines’ that Galileo and other scientists have been able to construct, have no real analogues in economics. The stability, autonomy, modularity, and interventional invariance, that we may find between entities in nature, simply are not there in real-world economies. That’s are real-world fact, and contrary to the beliefs of most mainstream economists, they wont’t go away simply by applying deductive-axiomatic economic theory with tons of more or less unsubstantiated assumptions.
By this I do not mean to say that we have to discard all (causal) theories/laws building on modularity, stability, invariance, etc. But we have to acknowledge the fact that outside the systems that possibly fullfil these requirements/assumptions, they are of little substantial value. Running paper and pen experiments on artificial ‘analogue’ model economies is a sure way of ‘establishing’ (causal) economic laws or solving intricate econometric problems of autonomy, identification, invariance and structural stability — in the model-world. But they are pure substitutes for the real thing and they don’t have much bearing on what goes on in real-world open social systems.
To solve, understand, or explain real-world problems you actually have to know something about them – logic, pure mathematics, data simulations or deductive axiomatics don’t take you very far. Most econometrics and economic theories/models are splendid logic machines. But — applying them to the real-world is a totally hopeless undertaking! The assumptions one has to make in order to successfully apply these deductive-axiomatic theories/models/machines are devastatingly restrictive and mostly empirically untestable– and hence make their real-world scope ridiculously narrow. To fruitfully analyse real-world phenomena with models and theories you cannot build on patently and known to be ridiculously absurd assumptions.
No matter how much you would like the world to entirely consist of heavy balls, the world is not like that. The world also has its fair share of feathers and plastic bags.