Thursday , May 2 2024
Home / The Angry Bear / The Amateur Epidemiologist

The Amateur Epidemiologist

Summary:
I frequently read a debate about whether, when assessing anti covid 19 performance, one should look at deaths per capita or deaths on days since 1000 deaths. Like everything involving Americans, this has become a pro v contra Trump debate — clearly he wants deaths per capita (and the absolute number of tests performed). The arguments are as follows. for number of deaths on time since a certain number was reached, it is argued that all countries are at the negligible fraction of people are resistant (naturally exponential growth) stage, so the relevant variable is rate of growth of cases (or deaths). So cases now divided by cases a week ago and not by population. The counterargument is that, come on it’s obvious. I think that it is natural to expect a

Topics:
Robert Waldmann considers the following as important:

This could be interesting, too:

Eric Kramer writes An economic analysis of presidential immunity

Angry Bear writes Protesting Now and in the Sixties and Seventies

Lars Pålsson Syll writes The non-existence of economic laws

John Quiggin writes The war to end war, still going on

I frequently read a debate about whether, when assessing anti covid 19 performance, one should look at deaths per capita or deaths on days since 1000 deaths. Like everything involving Americans, this has become a pro v contra Trump debate — clearly he wants deaths per capita (and the absolute number of tests performed).

The arguments are as follows. for number of deaths on time since a certain number was reached, it is argued that all countries are at the negligible fraction of people are resistant (naturally exponential growth) stage, so the relevant variable is rate of growth of cases (or deaths). So cases now divided by cases a week ago and not by population.

The counterargument is that, come on it’s obvious.

I think that it is natural to expect a transition from roughly the same growth (no matter what population is) to cases (very roughly) proportional to population. All of this is during the neglible fraction resistant phase.

I am going to set up a straw man and knock him down with a silly super super simple model. So the straw man is that it is reasonable to assume that if two countries have the same number of cases at time t, then they will have similar numbers later. The silly model is that people live on a giant chess board (1000 squares on a side) and infect people who share an edge. This gives R_0 between 2 and 3. So say start with two cases, one in each country. Straw man says there should be the same number of cases in each country in each subsequent period.

OK now country one is the upper right quadrant and country two is the rest of the board. Strra man predicts the same number of cases. Or what if all is the same but I draw the border so country 2 is the lower left quadrant and country 1 is the rest. Again the same number.

So straw man concludes that there are never any cases in the lower right or upper left. This can’t be right.

Now I will discuss a model which is slightly less silly. Assume most transmission is local so the infected and the infector are in the same country. Assume people are infectious for one period and that, during tht time, each infected person infects n nearby people. Also assume lower rate of distant infection, so an infected person infects someone chosen at random in the whole world with probability m this figure illustrates a pure coincidence.The Amateur Epidemiologist

Robert Waldmann
Robert J. Waldmann is a Professor of Economics at Univeristy of Rome “Tor Vergata” and received his PhD in Economics from Harvard University. Robert runs his personal blog and is an active contributor to Angrybear.

Leave a Reply

Your email address will not be published. Required fields are marked *