Wednesday , December 18 2024
Home / Lars P. Syll / How do we attach probabilities to the real world?

How do we attach probabilities to the real world?

Summary:
How do we attach probabilities to the real world? Econometricians usually think that the data generating process (DGP) always can be modelled properly using a probability measure. The argument is standardly based on the assumption that the right sampling procedure ensures there will always be an appropriate probability measure. But – as always – one really has to argue the case, and present warranted evidence that real-world features are correctly described by some probability measure. There are no such things as free-standing probabilities – simply because probabilities are strictly seen only defined relative to chance set-ups – probabilistic nomological machines like flipping coins or roulette-wheels. And even these machines can be tricky to handle. Although prob(fair coin lands heads|I toss it) = prob(fair coin lands head & I toss it)|prob(fair coin lands heads) may be well-defined, it’s not certain we can use it, since we cannot define the probability that I will toss the coin given the fact that I am not a nomological machine producing coin tosses. No nomological machine – no probability.

Topics:
Lars Pålsson Syll considers the following as important:

This could be interesting, too:

Lars Pålsson Syll writes The history of econometrics

Lars Pålsson Syll writes What statistics teachers get wrong!

Lars Pålsson Syll writes Statistical uncertainty

Lars Pålsson Syll writes The dangers of using pernicious fictions in statistics

How do we attach probabilities to the real world?

Econometricians usually think that the data generating process (DGP) always can be modelled properly using a probability measure. The argument is standardly based on the assumption that the right sampling procedure ensures there will always be an appropriate probability measure. But – as always – one really has to argue the case, and present warranted evidence that real-world features are correctly described by some probability measure.

There are no such things as free-standing probabilities – simply because probabilities are strictly seen only defined relative to chance set-ups – probabilistic nomological machines like flipping coins or roulette-wheels. And even these machines can be tricky to handle. Although prob(fair coin lands heads|I toss it) = prob(fair coin lands head & I toss it)|prob(fair coin lands heads) may be well-defined, it’s not certain we can use it, since we cannot define the probability that I will toss the coin given the fact that I am not a nomological machine producing coin tosses.

No nomological machine – no probability.

A chance set-up is a nomological machine for probabilistic laws, and our description of it is a model that works in the same way as a model for deterministic laws … A situation must be like the model both positively and negatively – it must have all the characteristics featured in the model and it must have no significant interventions to prevent it operating as envisaged – before we can expect repeated trials to give rise to events appropriately described by the corresponding probability …

How do we attach probabilities to the real world?Probabilities attach to the world via models, models that serve as blueprints for a chance set-up – i.e., for a probability-generating machine … Once we review how probabilities are associated with very special kinds of models before they are linked to the world, both in probability theory itself and in empirical theories like physics and economics, we will no longer be tempted to suppose that just any situation can be described by some probability distribution or other. It takes a very special kind of situation withe the arrangements set just right – and not interfered with – before a probabilistic law can arise …

Probabilities are generated by chance set-ups, and their characterisation necessarily refers back to the chance set-up that gives rise to them. We can make sense of probability of drawing two red balls in a row from an urn of a certain composition with replacement; but we cannot make sense of the probability of six per cent inflation in the United Kingdom next year without an implicit reference to a specific social and institutional structure that will serve as the chance set-up that generates this probability.

Lars Pålsson Syll
Professor at Malmö University. Primary research interest - the philosophy, history and methodology of economics.

Leave a Reply

Your email address will not be published. Required fields are marked *