Monday , November 25 2024
Home / Lars P. Syll / Too much of ‘we controlled for’

Too much of ‘we controlled for’

Summary:
Too much of ‘we controlled for’ The gender pay gap is a fact that, sad to say, to a non-negligible extent is the result of discrimination. And even though many women are not deliberately discriminated against, but rather self-select into lower-wage jobs, this in no way magically explains away the discrimination gap. As decades of socialization research has shown, women may be ‘structural’ victims of impersonal social mechanisms that in different ways aggrieve them. Wage discrimination is unacceptable. Wage discrimination is a shame. You see it all the time in studies. “We controlled for…” And then the list starts. The longer the better. Income. Age. Race. Religion. Height. Hair color. Sexual preference. Crossfit attendance. Love of parents. Coke or

Topics:
Lars Pålsson Syll considers the following as important:

This could be interesting, too:

Lars Pålsson Syll writes What statistics teachers get wrong!

Lars Pålsson Syll writes Statistical uncertainty

Lars Pålsson Syll writes The dangers of using pernicious fictions in statistics

Lars Pålsson Syll writes Interpreting confidence intervals

Too much of ‘we controlled for’

The gender pay gap is a fact that, sad to say, to a non-negligible extent is the result of discrimination. And even though many women are not deliberately discriminated against, but rather self-select into lower-wage jobs, this in no way magically explains away the discrimination gap. As decades of socialization research has shown, women may be ‘structural’ victims of impersonal social mechanisms that in different ways aggrieve them. Wage discrimination is unacceptable. Wage discrimination is a shame.

You see it all the time in studies. “We controlled for…” And then the list starts. The longer the better. Income. Age. Race. Religion. Height. Hair color. Sexual preference. Crossfit attendance. Love of parents. Coke or Pepsi. The more things you can control for, the stronger your study is — or, at least, the stronger your study seems. Controls give the feeling of specificity, of precision. But sometimes, you can control for too much. Sometimes you end up controlling for the thing you’re trying to measure …

Too much of ‘we controlled for’An example is research around the gender wage gap, which tries to control for so many things that it ends up controlling for the thing it’s trying to measure. As my colleague Matt Yglesias wrote:

“The commonly cited statistic that American women suffer from a 23 percent wage gap through which they make just 77 cents for every dollar a man earns is much too simplistic. On the other hand, the frequently heard conservative counterargument that we should subject this raw wage gap to a massive list of statistical controls until it nearly vanishes is an enormous oversimplification in the opposite direction. After all, for many purposes gender is itself a standard demographic control to add to studies — and when you control for gender the wage gap disappears entirely!” …

Take hours worked, which is a standard control in some of the more sophisticated wage gap studies. Women tend to work fewer hours than men. If you control for hours worked, then some of the gender wage gap vanishes. As Yglesias wrote, it’s “silly to act like this is just some crazy coincidence. Women work shorter hours because as a society we hold women to a higher standard of housekeeping, and because they tend to be assigned the bulk of childcare responsibilities.”

Controlling for hours worked, in other words, is at least partly controlling for how gender works in our society. It’s controlling for the thing that you’re trying to isolate.

Ezra Klein

Trying to reduce the risk of having established only ‘spurious relations’ when dealing with observational data, statisticians and econometricians standardly add control variables. The hope is that one thereby will be able to make more reliable causal inferences. But — as Keynes showed already back in the 1930s when criticizing statistical-econometric applications of regression analysis — if you do not manage to get hold of all potential confounding factors, the model risks producing estimates of the variable of interest that are even worse than models without any control variables at all. Conclusion: think twice before you simply include ‘control variables’ in your models!

Advertisements
Lars Pålsson Syll
Professor at Malmö University. Primary research interest - the philosophy, history and methodology of economics.

Leave a Reply

Your email address will not be published. Required fields are marked *