Thursday , October 6 2022
Home / Lars P. Syll / Avoiding statistical ‘dichotomania’

Avoiding statistical ‘dichotomania’

Summary:
We are calling for a stop to the use of P values in the conventional, dichotomous way — to decide whether a result refutes or supports a scientific hypothesis … The rigid focus on statistical significance encourages researchers to choose data and methods that yield statistical significance for some desired (or simply publishable) result, or that yield statistical non-significance for an undesired result, such as potential side effects of drugs — thereby invalidating conclusions … Again, we are not advocating a ban on P values, confidence intervals or other statistical measures — only that we should not treat them categorically. This includes dichotomization as statistically significant or not, as well as categorization based on other statistical measures such as Bayes

Topics:
Lars Pålsson Syll considers the following as important:

This could be interesting, too:

Lars Pålsson Syll writes A different way to solve quadratic equations

Lars Pålsson Syll writes Statistical models and the assumptions on which they build

Lars Pålsson Syll writes Support Vector Machines (student stuff)

Lars Pålsson Syll writes How to teach econometrics

We are calling for a stop to the use of P values in the conventional, dichotomous way — to decide whether a result refutes or supports a scientific hypothesis …

The rigid focus on statistical significance encourages researchers to choose data and methods that yield statistical significance for some desired (or simply publishable) result, or that yield statistical non-significance for an undesired result, such as potential side effects of drugs — thereby invalidating
conclusions …

Avoiding statistical ‘dichotomania’Again, we are not advocating a ban on P values, confidence intervals or other statistical measures — only that we should not treat them categorically. This includes dichotomization as statistically significant or not, as well as categorization based on other statistical measures such as Bayes factors.

One reason to avoid such ‘dichotomania’ is that all statistics, including P values and confidence intervals, naturally vary from study to study, and often do so to a surprising degree. In fact, random variation alone can easily lead to large disparities in P values, far beyond falling just to either side of the 0.05 threshold …

We must learn to embrace uncertainty. One practical way to do so is to rename confidence intervals as ‘compatibility intervals’ and interpret them in a way that avoids overconfidence. Specifically, we recommend that authors describe the practical implications of all values inside the interval, especially the observed effect (or point estimate) and the limits. In doing so, they should remember that all the values between the interval’s limits are reasonably compatible with the data, given the statistical assumptions used to compute the interval. Therefore, singling out one particular value (such as the null value) in the interval as ‘shown’ makes no sense.

Valentin Amrhein, Sander Greenland, Blake McShane

In its standard form, a significance test is not the kind of ‘severe test’ that we are looking for in our search for being able to confirm or disconfirm empirical scientific hypotheses. This is problematic for many reasons, one being that there is a strong tendency to accept the null hypothesis since it can’t be rejected at the standard 5% significance level. In their standard form, significance tests bias against new hypotheses by making it hard to disconfirm the null hypothesis.

And as shown over and over again when it is applied, people have a tendency to read “not disconfirmed” as “probably confirmed.” Standard scientific methodology tells us that when there is only say a 10 % probability that pure sampling error could account for the observed difference between the data and the null hypothesis, it would be more ‘reasonable’ to conclude that we have a case of disconfirmation. Especially if we perform many independent tests of our hypothesis and they all give about the same 10 % result as our reported one, I guess most researchers would count the hypothesis as even more disconfirmed.

Most importantly — we should never forget that the underlying parameters we use when performing significance tests are model constructions. Our P values mean next to nothing if the model is wrong.

Lars Pålsson Syll
Professor at Malmö University. Primary research interest - the philosophy, history and methodology of economics.

Leave a Reply

Your email address will not be published. Required fields are marked *