Tuesday , November 5 2024
Home / Real-World Economics Review / Statistical significance is not real-world significance

Statistical significance is not real-world significance

Summary:
From Lars Syll As shown over and over again when significance tests are applied, people have a tendency to read ‘not disconfirmed’ as ‘probably confirmed.’ Standard scientific methodology tells us that when there is only say a 10 % probability that pure sampling error could account for the observed difference between the data and the null hypothesis, it would be more ‘reasonable’ to conclude that we have a case of disconfirmation. Especially if we perform many independent tests of our hypothesis and they all give about the same 10 % result as our reported one, I guess most researchers would count the hypothesis as even more disconfirmed. We should never forget that the underlying parameters we use when performing significance tests are model constructions. Our p-values mean next to nothing if the model is wrong. And most importantly — statistical significance tests DO NOT validate models!   In journal articles a typical regression equation will have an intercept and several explanatory variables. The regression output will usually include an F-test, with p – 1 degrees of freedom in the numerator and n – p in the denominator. The null hypothesis will not be stated. The missing null hypothesis is that all the coefficients vanish, except the intercept. If F is significant, that is often thought to validate the model. Mistake. The F-test takes the model as given.

Topics:
Editor considers the following as important:

This could be interesting, too:

Merijn T. Knibbe writes ´Fryslan boppe´. An in-depth inspirational analysis of work rewarded with the 2024 Riksbank prize in economic sciences.

Peter Radford writes AJR, Nobel, and prompt engineering

Lars Pålsson Syll writes Central bank independence — a convenient illusion

Eric Kramer writes What if Trump wins?

from Lars Syll

Statistical significance is not real-world significanceAs shown over and over again when significance tests are applied, people have a tendency to read ‘not disconfirmed’ as ‘probably confirmed.’ Standard scientific methodology tells us that when there is only say a 10 % probability that pure sampling error could account for the observed difference between the data and the null hypothesis, it would be more ‘reasonable’ to conclude that we have a case of disconfirmation. Especially if we perform many independent tests of our hypothesis and they all give about the same 10 % result as our reported one, I guess most researchers would count the hypothesis as even more disconfirmed.

We should never forget that the underlying parameters we use when performing significance tests are model constructions. Our p-values mean next to nothing if the model is wrong. And most importantly — statistical significance tests DO NOT validate models!  

Statistical significance is not real-world significanceIn journal articles a typical regression equation will have an intercept and several explanatory variables. The regression output will usually include an F-test, with p – 1 degrees of freedom in the numerator and n – p in the denominator. The null hypothesis will not be stated. The missing null hypothesis is that all the coefficients vanish, except the intercept.

If F is significant, that is often thought to validate the model. Mistake. The F-test takes the model as given. Significance only means this: if the model is right and the coefficients are 0, it is very unlikely to get such a big F-statistic. Logically, there are three possibilities on the table:
i) An unlikely event occurred.
ii) Or the model is right and some of the coefficients differ from 0.
iii) Or the model is wrong.
So?

Leave a Reply

Your email address will not be published. Required fields are marked *