Thursday , November 21 2024
Home / Jodi Beggs: Economists Do It With Models / At Google, Employee-Led Effort Finds Men Are Paid More Than Women

At Google, Employee-Led Effort Finds Men Are Paid More Than Women

Summary:
In case you haven’t heard, Google is the target of a class-action lawsuit based on gender discrimination. (Shocking, I know, given what we know about Silicon Valley more generally. =P) Part of the impetus for the lawsuit is an employee-led effort to collect compensation data that shows that men are paid more than women at the company, as described in the above article. From a data perspective, proving discrimination can be somewhat difficult- for example, we hear the often-quoted “women make 77 cents for every dollar a man makes” statistic, but this in itself doesn’t really tell us anything about discrimination. It could instead be the case that women sort into lower-paying occupations and jobs of their own volition, choose to work fewer hours, and so on. (On the other hand, we can’t rule

Topics:
Jodi Beggs considers the following as important: , , , , , , ,

This could be interesting, too:

Merijn T. Knibbe writes In Greece, gross fixed investment still is at a pre-industrial level.

Robert Skidelsky writes Speech in the House of Lords – Autumn Budget 2024

Lars Pålsson Syll writes Modern monetär teori

Lars Pålsson Syll writes Problemen med Riksbankens oberoende

In case you haven’t heard, Google is the target of a class-action lawsuit based on gender discrimination. (Shocking, I know, given what we know about Silicon Valley more generally. =P) Part of the impetus for the lawsuit is an employee-led effort to collect compensation data that shows that men are paid more than women at the company, as described in the above article.

From a data perspective, proving discrimination can be somewhat difficult- for example, we hear the often-quoted “women make 77 cents for every dollar a man makes” statistic, but this in itself doesn’t really tell us anything about discrimination. It could instead be the case that women sort into lower-paying occupations and jobs of their own volition, choose to work fewer hours, and so on. (On the other hand, we can’t rule out the discrimination hypothesis either.)

Ideally, what one would do to look for discrimination would be to compare otherwise equivalent men and women and see whether compensation differences still exist within the matched groups. Mathematically, this is essentially what economists do when they run a regression with “control variables”- variables that suck up the differences that are accounted for by stuff other than gender.

Google employees seem to be up on their applied math, since they put together an analysis so that they could make the following statement:

Based upon its own analysis from January, Google said female employees make 99.7 cents for every dollar a man makes, accounting for factors like location, tenure, job role, level and performance.

On the surface, this seems to suggest that significant gender discrimination just doesn’t show up in the data. BUT…and this is important…this example highlights the difference between doing math and doing data analysis (or, more charitably, data science)- while this conclusion may be mathematically correct, it’s basically a “garbage in, garbage out” use of econometric tools. Simply put, if you’re trying to isolate gender discrimination, you can’t just blindly control for things that themselves are likely the result of gender discrimination! It’d be like looking at the impact of diet on health and using weight as a control variable- sure, you’d get an “all else being equal” sort of result, but it wouldn’t make sense since weight is likely a step in the chain between diet and health outcomes.

In this way, Google tipped its hand quite a bit regarding the particular nature of gender discrimination at the company- if men and women are paid the same once job title and performance reviews are taken into account, then gender discrimination (if it exists) is taking place either by herding women into jobs with different roles/levels or showing anti-female (or pro-male) bias in performance reviews. (Also, if the “levels” have set pay bands, which the article kind of suggests, doesn’t controlling for level largely amount to assuming your conclusion?)

Turns out my suspicions are pretty on point, given the specific claim of the lawsuit. It’s amazing what you can learn from data IF you look at it properly. In a semi-previous life, I worked as an economic consultant, which basically means that I helped prepare expert testimony to be used in lawsuits involving economic matters. What I wouldn’t give to be the expert witness who gets to offer up a rebuttal to Google’s crap econometrics here.

You can also see this post on the original site here.

Leave a Reply

Your email address will not be published. Required fields are marked *