Sunday , March 24 2019
Home / Lars P. Syll / The wisdom of crowds

# The wisdom of crowds

Summary:
The wisdom of crowds  [embedded content] A classic demonstration of group intelligence is the jelly-beans-in-the-jar experiment, in which invariably the group’s estimate is superior to the vast majority of the individual guesses. When finance professor Jack Treynor ran the experiment in his class with a jar that held 850 beans, the group estimate was 871. Only one of the fifty-six people in the class made a better guess. There are two lessons to draw from these experiments. First, in most of them the members of the group were not talking to each other or working on a problem together. They were making individual guesses, which were aggregated and then averaged … Second, the group’s guess will not be better than that of every single person in the group

Topics:
Lars Pålsson Syll considers the following as important:

This could be interesting, too:

Lars Pålsson Syll writes The rational expectations putsch

Lars Pålsson Syll writes Rybin Male Choir

Lars Pålsson Syll writes Public debt — questions and answers

Lars Pålsson Syll writes John Hassler och Klas Eklund — etablissemangsekonomer med dimljuset på

## The wisdom of crowds

A classic demonstration of group intelligence is the jelly-beans-in-the-jar experiment, in which invariably the group’s estimate is superior to the vast majority of the individual guesses. When finance professor Jack Treynor ran the experiment in his class with a jar that held 850 beans, the group estimate was 871. Only one of the fifty-six people in the class made a better guess.

There are two lessons to draw from these experiments. First, in most of them the members of the group were not talking to each other or working on a problem together. They were making individual guesses, which were aggregated and then averaged … Second, the group’s guess will not be better than that of every single person in the group each time. In many (perhaps most) cases, there will be a few people who do better than the group. This is, in some sense, a good thing, since especially in situations where there is an incentive for doing well (like, say, the stock market) it gives people reason to keep participating. But there is no evidence in these studies that certain people consistently outperform the group. In other words, if you run ten different jelly-bean-counting experiments, it’s likely that each time one or two students will outperform the group. But they will not be the same students each time. Over the ten experiments, the group’s performance will almost certainly be the best possible. The simplest way to get reliably good answers is just to ask the group each time.