Wednesday , November 6 2024
Home / Lars P. Syll / Read my lips — using an RCT guarantees nothing!

Read my lips — using an RCT guarantees nothing!

Summary:
Read my lips — using an RCT guarantees nothing! The claimed hierarchy of methods, with randomized assignment being deemed inherently superior to observational studies, does not survive close scrutiny. Despite frequent claims to the contrary, an RCT does not equate counterfactual outcomes between treated and control units. The fact that systematic bias in estimating the mean impact vanishes in expectation (under ideal conditions) does not imply that the (unknown) experimental error in a one-off RCT is less than the (unknown) error in some alternative observational study. We obviously cannot know that. A biased observational study with a reasonably large sample size may well be closer to the truth in specific trials than an underpowered RCT … The

Topics:
Lars Pålsson Syll considers the following as important:

This could be interesting, too:

Lars Pålsson Syll writes What statistics teachers get wrong!

Lars Pålsson Syll writes Statistical uncertainty

Lars Pålsson Syll writes The dangers of using pernicious fictions in statistics

Lars Pålsson Syll writes Interpreting confidence intervals

Read my lips — using an RCT guarantees nothing!

Read my lips — using an RCT guarantees nothing!The claimed hierarchy of methods, with randomized assignment being deemed inherently superior to observational studies, does not survive close scrutiny. Despite frequent claims to the contrary, an RCT does not equate counterfactual outcomes between treated and control units. The fact that systematic bias in estimating the mean impact vanishes in expectation (under ideal conditions) does not imply that the (unknown) experimental error in a one-off RCT is less than the (unknown) error in some alternative observational study. We obviously cannot know that. A biased observational study with a reasonably large sample size may well be closer to the truth in specific trials than an underpowered RCT …

The questionable claims made about the superiority of RCTs as the “gold standard” have had a distorting influence on the use of impact evaluations to inform development policymaking, given that randomization is only feasible for a non-random subset of policies. When a program is community- or economy-wide or there are pervasive spillover effects from those treated to those not, an RCT will be of little help, and may well be deceptive. The tool is only well suited to a rather narrow range of development policies, and even then it will not address many of the questions that policymakers ask. Advocating RCTs as the best, or even only, scientific method for impact evaluation risks distorting our knowledge base for fighting poverty.

Martin Ravallion

Even if you manage to do the assignment to treatment and control groups ideally random, the sample selection certainly is — except in extremely rare cases — not random. Even if we make a proper randomized assignment, if we apply the results to a biased sample, there is always the risk that the experimental findings will not apply. What works ‘there,’ does not work ‘here.’ Randomization hence does not ‘guarantee ‘ or ‘ensure’ making the right causal claim. Although randomization may help us rule out certain possible causal claims, randomization per se does not guarantee anything!

There is almost always a trade-off between bias and precision. In real-world settings, a little bias often does not overtrump greater precision. And — most importantly — in case we have a population with sizeable heterogeneity, the average treatment effect of the sample may differ substantially from the average treatment effect in the population. If so, the value of any extrapolating inferences made from trial samples to other populations is highly questionable.

And — as underscored by Ravallion — since most real-world experiments and trials build on performing a single randomization, what would happen if you kept on randomizing forever, does not help you to ‘ensure’ or ‘guarantee’ that you do not make false causal conclusions in the one particular randomized experiment you actually do perform. It is indeed difficult to see why thinking about what you know you will never do, would make you happy about what you actually do.

Lars Pålsson Syll
Professor at Malmö University. Primary research interest - the philosophy, history and methodology of economics.

Leave a Reply

Your email address will not be published. Required fields are marked *